Abstract

The conjugacy relation plays an important role in group theory. If [Formula: see text] and [Formula: see text] are elements of a group [Formula: see text], [Formula: see text] is conjugate to [Formula: see text] if [Formula: see text] for some [Formula: see text]. The group conjugacy extends to inverse semigroups in a natural way: for [Formula: see text] and [Formula: see text] in an inverse semigroup [Formula: see text], [Formula: see text] is conjugate to [Formula: see text] if [Formula: see text] and [Formula: see text] for some [Formula: see text]. In this paper, we define a conjugacy for an arbitrary semigroup [Formula: see text] that reduces to the inverse semigroup conjugacy if [Formula: see text] is an inverse semigroup. (None of the existing notions of conjugacy for semigroups has this property.) We compare our new notion of conjugacy with existing definitions, characterize the conjugacy in basic transformation semigroups and their ideals using the representation of transformations as directed graphs, and determine the number of conjugacy classes in these semigroups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call