Abstract

Deconvolution is the most commonly used image processing method in optical imaging systems to remove the blur caused by the point-spread function (PSF). While this method has been successful in deblurring, it suffers from several disadvantages, such as slow processing time due to multiple iterations required to deblur and suboptimal in cases where the experimental operator chosen to represent PSF is not optimal. In this paper, we present a deep-learning-based deblurring method that is fast and applicable to optical microscopic imaging systems. We tested the robustness of proposed deblurring method on the publicly available data, simulated data and experimental data (including 2D optical microscopic data and 3D photoacoustic microscopic data), which all showed much improved deblurred results compared to deconvolution. We compared our results against several existing deconvolution methods. Our results are better than conventional techniques and do not require multiple iterations or pre-determined experimental operator. Our method has several advantages including simple operation, short time to compute, good deblur results and wide application in all types of optical microscopic imaging systems. The deep learning approach opens up a new path for deblurring and can be applied in various biomedical imaging fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.