Abstract
Graph neural networks have been frequently applied in recommender systems due to their powerful representation abilities for irregular data. However, these methods still suffer from the difficulties such as the inflexible graph structure, sparse and highly imbalanced data, and relatively shallow networks, limiting rate prediction ability for recommendations. This paper presents a novel deep dynamic graph attention framework based on influence and preference relationship reconstruction (DGA-IPR) for recommender systems to learn optimal latent representations of users and items. The entire framework involves a user branch and an item branch. An influence-based dynamic graph attention (IDGA) module, a preference-based dynamic graph attention (PDGA) module, and an adaptive fine feature extraction (AFFE) module are respectively constructed for each branch. Concretely, the first two attention modules concentrate on reconstructing influence and preference relationship graphs, breaking imbalanced and fixed constraints of graph structures. Then a deep feature aggregation block and an adaptive feature fusion operation are built, improving the network depth and capturing potential high-order information expressions. Besides, AFFE is designed to acquire finer latent features for users and items. The DGA-IPR architecture is formed by integrating IDGA, PDGA, and AFFE for users and items, respectively. Experiments reveal the superiority of DGA-IPR over existing recommendation models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.