Abstract

We provide a new decomposition of the Laplacian matrix (for labeled directed graphs with strongly connected components), involving an invertible core matrix, the vector of tree constants, and the incidence matrix of an auxiliary graph, representing an order on the vertices. Depending on the particular order, the core matrix has additional properties. Our results are graph-theoretic/algebraic in nature. As a first application, we further clarify the binomial structure of (weakly reversible) mass-action systems, arising from chemical reaction networks. Second, we extend a classical result by Horn and Jackson on the asymptotic stability of special steady states (complex-balanced equilibria). Here, the new decomposition of the graph Laplacian allows us to consider regions in the positive orthant with given monomial evaluation orders (and corresponding polyhedral cones in logarithmic coordinates). As it turns out, all dynamical systems are asymptotically stable that can be embedded in certain binomial differential inclusions. In particular, this holds for complex-balanced mass-action systems, and hence, we also obtain a polyhedral-geometry proof of the classical result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.