Abstract
AbstractPrevious studies have shown that different market factors influence tourism demand at different timescales. Accordingly, we propose the decomposition ensemble learning approach to analyze impact of different market factors on tourism demand, and explore the potential advantages of the proposed method on forecasting tourism demand in Asia‐Pacific region. By decomposing tourist arrivals with noise‐assisted multivariate empirical mode decomposition, this study further explores the multiscale relationship between tourist destinations and major source countries. The empirical results show that decomposition ensemble approach performs significantly better than benchmarks in terms of the level forecasting accuracy and directional forecasting accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.