Abstract

In the framework of continuum damage mechanics, a new damage-coupled cyclic plastic model is proposed to describe the nonlinear evolution of whole-life ratchetting and its dependence on the stress level. The characteristic that the damage evolution rate of U75V heat-treated steel decays in the initial load cycles is considered by introducing a modified term into classic damage evolution equation. A hybrid fatigue failure criterion considering both the fatigue and ratchetting strain-induced failures is established based on the fatigue failure rule concluded from experiments. Comparisons between simulated and experimental stress–strain hysteresis loops, ratchetting strains, damage evolutions, and fatigue lives are performed to validate the proposed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.