Abstract
Titanium alloys are widely used in the aeronautical and engineering fields as they show an excellent trade-off between the mass and mechanical properties, but as hard materials, they are difficult to machine using cutting tools. The abrasive water jet affords a good solution to produce titanium parts, especially slim ones. To do so, there is a need to adopt a modelling approach for the depth milled. However, a general methodology that takes into account all the parameters leads to complex models based on a large number of experiments. The present article proposes a depth of cut model combined with a rapid calibration method. The case addressed is that of open rectangular pockets on a Ti-6AL-4V titanium alloy. The approach introduces the machine configuration notion considering that a given machine, pressure level and abrasive impose the abrasive flow rate needed in order to obtain an optimal material removal rate. For a chosen configuration, calibration of the model is performed from a series of elementary passes and just three pocket machining passes. The method is rapid and effective as the accuracy of the models obtained over a number of configurations was to within the order of 5%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.