Abstract
Direct Simulation Monte Carlo (DSMC) is a widely applied numerical technique to simulate rarefied gas flows. For flows around immersed moving objects, the use of body fitted meshes is inefficient, whereas published methods using cut-cells in a fixed background mesh have important limitations. We present a novel cut-cell algorithm, which allows for accurate DSMC simulations around arbitrarily shaped moving objects. The molecule–surface interaction occurs exactly at the instantaneous collision point on the moving body surface, and accounts for its instantaneous velocity, thus precisely imposing the desired boundary conditions. A simple algorithm to calculate the effective volume of cut cells is presented and shown to converge linearly with grid refinement. The potential and efficiency of method is demonstrated by calculating rarefied gas flow drag forces on steady and moving immersed spheres. The obtained results are in excellent agreement with results obtained with a body-fitted mesh, and with analytical approximations for high-Knudsen number flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.