Abstract

Dynamic stability of cutting processes such as milling and turning is mainly restricted by the phenomenon of the regenerative effect, causing self-excited vibration, which is well known as machine-tool chatter. With the semidiscretization method for periodic delay-differential equations, there exists an appropriate method for determining the stability boundary curve in the domain of technological parameters. The stability boundary is implicitly defined as a level set of a function on the parameter domain, which makes the evaluation computationally expensive when using complete enumeration. In order to reduce computational cost, we first investigate two types of curve tracking algorithms finding them not appropriate for computing stability charts as they may get stuck at cusp points or near-branch zones. We then present a new curve tracking method, which overcomes these difficulties and makes it possible to compute stability boundary curves very efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.