Abstract
The paper presents an advanced parametric method of blade stacking lines in terms of sweep and lean based on controlled curvature. To the knowledge of the authors, there is no related approach reported in open literature that uses Bezier spline as the radial curvature distribution to improve the smoothness of the blade surface; most previous studies ignored the discontinuous slopes of curvature of the parametric curves. The parametric method called curvature-controlled stacking-line method (CCSLM) is performed by changing the magnitude of the sweep or lean. A fourth Bezier spline is adopted to define the curvature of spanwise stacking line directly ensuring surface smoothness. Then, the redesign cascades are created by sectional profiles stacked along the radial stacking lines which are obtained by twice integrating the Bezier spline. Then, the advanced method is conducted to optimize a high-subsonic controlled diffusion airfoil at design point, where the blade shape is generated in terms of lean. A single-objective optimization is performed using Kriging model and genetic algorithm to optimize total pressure loss, and the optimized geometry is obtained. The optimization results show that the blade design CCSLM has significant effects on the endwall flow vortex as well as radial loading distribution. The reduction of total pressure loss and secondary flow is also observed, and the aerodynamic performance is well improved compared with the original cascade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.