Abstract

Electrical impedance tomography (EIT) technology is an important imaging approach to show the conductivity distribution of the area noninvasively. Recently, 3D EIT has been extensively studied for its more comprehensive display of electrical properties. Nonetheless, most 3D EIT electrode models are based on multilayer ring electrodes and only suitable for specific scenarios. In order to overcome its limitations and alleviate the ill-condition of 3D EIT, we propose a new current injection and voltage measurement strategy based on scanning row electrodes (SRE) called the back electrode excitation (BEEM) strategy and select the optimal number of excitation electrodes according to different imaging effects. A 3D electrical impedance imaging system based on SRE is designed. Then, the traditional excitation measurement strategy is introduced, and the two strategies are compared through simulation and actual experiments. The results show that the BEEM strategy with SRE can not only obtain rich potential information in the finite field but also significantly improve the imaging detection depth, accuracy, and noise immunity compared with the flat electrode array.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.