Abstract

Small satellites, or CubeSats, are envisioned as a promising solution for future satellite communication networks because of their low costs and short deployment cycle. Currently, CubeSats communicate at conventionally allocated satellite communication frequencies. However, with the increase in the number of CubeSats, CubeSat-enabled communication systems, and many new use cases, new spectrum bands and a more efficient spectrum usage are needed. In this paper, a novel CubeSat design with reconfigurable multi-band radios for communication in dynamic frequencies is proposed.The multi-band radio design is realized by two complementary approaches, namely, an electronics-based and a photonics-based approach. The multi-band communication covers a wide range from radio frequencies (2–30 GHz), millimeter wave (30–300 GHz), Terahertz band (up to 10 THz), and optical frequencies (with typical bands of 850 nm/350 THz, 1300 nm/230 THz, and 1550 nm/193 THz). A thorough link budget analysis is conducted to demonstrate the potential of the proposed multi-band architecture for space information networks. Key parameters in the satellite constellation design are investigated to explore the feasibility of deployment at different altitudes in the exosphere orbit (500 km and above). A continuous global coverage is demonstrated to serve the Internet of Space Things, a new paradigm for next generation satellite communication networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call