Abstract
In this study, a new Cu(TiBNx) alloy film has been explored and utilized as a flexible heat dissipation layer for the substrate of high power LEDs to boost their per-watt illuminance by reducing the thermal resistance and increasing the thermal conductivity of the substrate. The new film is a Cu-alloy seed layer fabricated by co-sputtering Cu and TiB in an N2 atmosphere on a Ta/polyimide (Ta/PI) substrate. The film was then annealed at 340 °C for 1 h without noticeable Cu oxide formation around the film-substrate interface. The new film exhibits low resistivity, high thermal conductivity and low thermal resistance, rendering a substantially higher per-watt illuminance for LEDs that utilize the film as their additional heat dissipation layer. The experimental results gained in the study appear to confirm the new Cu(TiBNx) film as a good candidate material, at least, for boosting the per-watt illuminance of high power LEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.