Abstract

Using the original technology of building two-dimensional color elastogram, point and two-dimensional shear wave elastography were performed using linear sensors on commercial ultrasound scanners: Aixplorer (SuperSonic Imagine, France), Acuson S2000 (Siemens, Germany), and Verasonics acoustic system (Verasonics Inc., USA) with an open architecture to determine the stiffness values of focal inclusions and compare them with each other with the help of a new comparative elastomeric assessment criterion: modulus of stiffness difference between object and environment. First, the accuracy of the scanners under test was compared on a calibrated Elasticity QA Phantom, model 049 (Computerized Imaging Reference Systems Company, USA) with a known stiffness of various inclusions and thereafter on an uncalibrated BP1901 phantom (Blue Phantom, USA) with unknown stiffness of inclusions. The obtained values were compared to determine the influence of subjective factors on the measurement results. To assess the stiffness of the foci and compare the values with each other taking into account the rigidity of the environment, it is proposed to use a new criterion for the comparative assessment - the modulus of stiffness difference between focus and environment, which quantitatively characterizes the difference between these values. According to this criterion, all three ultrasound scanners have been established to show high and comparable accuracy in determining the stiffness of inclusions within the homogeneous medium in the experiments on phantoms. Two-dimensional shear wave elastography has revealed the effect of the control volume size and the correctness of the color scale setting, especially in the heterogeneous objects, on the results of elastometry. Methodological techniques to reduce the influence of subjective factors have also been proposed. The study has showed the possibility of using the modulus of stiffness difference between object and environment as a new criterion for comparative assessment of objects in shear wave elastometry taking into account stiffness of the environment. To reduce operator-dependence, it is necessary to take into consideration both the way of realizing elastometry (point or two-dimensional color elastography) and a number of other methodological factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.