Abstract

<p>Sea ice is a key component of the earth’s climate system as it modulates air-sea interactions in polar regions. These interactions strongly depend on openings in the sea ice cover, which are associated with fine-scale sea ice deformations. Visco-plastic sea ice rheologies used in most numerical models struggle at representing these fine-scale sea ice dynamics without going to very costly horizontal resolutions (~1km). A solution is to use damage propagation sea ice models, which were shown to reproduce well sea ice deformations with little dependency on the mesh resolution. </p><p>Here we present results from the first ocean--sea-ice coupled model using a rheology with damage propagation. The ocean component is the NEMO-OPA model. The sea ice component is neXtSIM, introducing the newly developed Brittle Bingham-Maxwell rheology. Results show that sea ice dynamics are very well represented from large scales (sea ice drift) to small-scales (sea ice deformation). Sea ice properties relevant for climate, i.e volume and area, also show a remarkable match with satellite observations. This coupled framework opens new opportunities to quantify the impact of small-scale sea ice dynamics on ice-ocean interactions.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call