Abstract
Summary The conductivity of an acid-etched fracture depends strongly on void spaces and channels along the fracture resulting from uneven acid etching of the fracture walls. In this study, we modeled deformation of the rough fracture surfaces acidized in heterogeneous formations based on synthetic permeability distributions and developed a new correlation to calculate the acid-etched fracture conductivity. In our previous work, we modeled the dissolution of the fracture surfaces in formations having small-scale heterogeneities in permeability. The characterization of the correlated permeability fields of rock includes the average permeability, normalized correlation lengths in both horizontal and vertical directions, and normalized standard deviation. These statistical parameters have a significant influence on the fracture-etching profiles obtained from the model. Beginning with this fracture-width distribution, we have modeled the deformation of the fracture surfaces as closure stress is applied to the fracture. The elastic properties of the rock, such as Young's modulus and Poisson's ratio, have effects on the size of the spaces remaining open after fracture closure. After the model yields the width profile under closure stress, the overall conductivity of the fracture is then obtained by numerically modeling the flow through this heterogeneous system. In this paper, we introduce our models and investigate the effects of permeability and mineralogy distributions and rock elastic properties on the overall conductivity of an acid-etched fracture. A new acid-fracture conductivity correlation is developed on the basis of many numerical experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.