Abstract
To improve tracked vehicle ride comfort and minimize weapon's vibration, a coordinated control strategy is developed for tracked vehicles' semi-active suspension systems. A model with eight degrees-of-freedom for a tracked vehicle equipped with magnetorheological dampers is established, and is followed by the formulation of a sliding mode controller. The proposed control algorithm is a localized-based controller that can change its target location in the tracked vehicle to where it is needed most. A co-simulation system model including a six-wheel tracked vehicle multi-body dynamics model, coordinated control strategy, and magnetorheological damper force allocator is developed to analyze the ride performance under bump and random road excitations. The simulation results demonstrate that the proposed strategy is very effective in improving the vehicle's ride performance and is much better than the traditional skyhook controllers. The innovation of this paper can be concluded as the coordinated control strategy can simultaneously improve vertical acceleration and pitch acceleration for the hull, which is of great importance for combat situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.