Abstract
AbstractA new controllable approach to synthesize hyperbranched poly(siloxysilanes) via hydrosilylation of A2‐ and B′Bx‐type monomers was developed in this work. A2 monomers (dimethylbis(dimethylsiloxy)siloxane and tetramethyldisiloxane), B′Bx monomers (methylvinyldiallylsilane and vinyltriallylsilane), and the resultant hyperbranched poly(siloxysilanes) were well characterized using FTIR, 1H NMR, 13C NMR, 29Si NMR, and SEC/MALLS. The In situ FTIR results indicate that the controllable polymerization can be carried out quickly and the reaction process was obviously performed in two stages. At the first stage, silicon hydride selectively reacts with vinyl silane groups, which produces intermediate structures with one SiH and two (or three) allyl groups. Consequently, at the second stage, these intermediates act as new AB2 (or AB3) type monomers and continue to be self‐polymerized to generate hyperbranched polymers. By this novel controllable approach, molecular weights and their polydispersity of the resulted hyperbranched poly(siloxysilanes) can be conveniently regulated via adjusting the process parameters, such as feeding ratio of two monomers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2708–2720, 2008
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.