Abstract
This paper proposes a new method using internal model control (IMC) to design Smith delay compensation decoupling controller for multivariable non-square systems with transfer function elements consisting of first order + time delay. This proposed method is applied to a shell control problem in multiple-input–multiple-output (MIMO) first order plus dead time non-square systems in which the number of input variables exceeds the number of output variables, with input and output variables being 3 and 2 respectively. This method does not only dynamically compensate for shortcoming caused by static decoupling but also overcomes the impact of model error on system performance caused by model approximation and uncertainty. In other words, the design method proposed in this paper is capable of significantly improving dynamic quality and robustness of the control system as can be seen from the simulation results. Moreover, this new method is simple and easy to implement. Integral of squared error (ISE) performance criterion is employed to quantitatively evaluate the design method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.