Abstract

Circulating current control is one of the critical issues in modular multilevel converters (MMCs). When a frequency-droop-regulated MMC is used to integrate an offshore wind farm into an high-voltage dc transmission system, the variation in its operating ac line frequency induces a change in circulating current harmonic frequencies. Hence, the conventional circulating current controllers, such as proportional-resonant or repetitive controller, which are tuned to a specific frequency, fail to alleviate the circulating current harmonics. In this paper, a new control architecture comprising of a spatial comb filter (SCF) and a spatial repetitive controller (SRC) is proposed to effectively attenuate the even-order harmonics in the circulating current independent of the operating ac line frequency of the MMC. The proposed controller incorporates the phase sampling technique to achieve the dynamic change in the sampling frequency, which is the key to strong periodic disturbance rejection capability of the SCF and SRC even under variable frequency operation. A system level simulation model has been developed on PLECS simulation software to demonstrate the performance of the proposed control architecture. In addition, a scaled-down laboratory prototype of a 1-kW, 400-V, five-level single-phase MMC is developed and the experimental results are presented to substantiate the performance of the proposed control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.