Abstract

It is well known that constructing codes with good parameters is one of the most important and fundamental problems in coding theory. Though a great many of good codes have been produced, most of them are defined over alphabets of sizes equal to prime powers. In this article, we provide a new explicit construction of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$(q+1)$ </tex-math></inline-formula> -ary nonlinear codes via rational function fields, where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> is a prime power. Our codes are constructed by evaluations of rational functions at all rational places (including the place of “infinity”) of the rational function field. Compared to the rational algebraic geometry codes, the main difference is that we allow rational functions to be evaluated at pole places. After evaluating rational functions from a union of Riemann-Roch spaces, we obtain a family of nonlinear codes with length <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q+1$ </tex-math></inline-formula> over the alphabet <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbb {F}_{q}\cup \{\infty \}$ </tex-math></inline-formula> . As a result, our codes have reasonable parameters as they are rather close to the Singleton bound. Furthermore, our codes have better parameters than those obtained from MDS codes via code alphabet restriction or extension. Amazingly, an efficient decoding algorithm can be provided for our codes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call