Abstract

As an emerging sampling technique, Compressed Sensing provides a quite masterly approach to data acquisition. Compared with the traditional method, how to conquer the Shannon/Nyquist sampling theorem has been fundamentally resolved. In this paper, first, we provide deterministic constructions of sensing matrices based on vector spaces over finite fields. Second, we analyze two kinds of attributes of sensing matrices. One is the recovery performance with respect to compressing and recovering signals in terms of restricted isometry property. In particular, we obtain a series of binary sensing matrices with sparsity level that are quite better than some existing ones. In order to save the storage space and accelerate the recovery process of signals, another character sparsity of matrices has been taken into account. Third, we merge our binary matrices with some matrices owning low coherence in terms of an embedding manipulation to obtain the improved matrices still having low coherence. Finally, compared with the quintessential binary matrices, the improved matrices possess better character of compressing and recovering signals. The favorable performance of our binary and improved matrices have been demonstrated by numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.