Abstract

Compared with independent component analysis (ICA), constrained ICA (CICA) has unique advantages in functional magnetic resonance image (fMRI) data analysis by introducing some priori information into the estimation process. However, there are still some controversies in the current CICA methods, such as how to choose the threshold parameter to restrain the similarity, and how to reduce the accuracy requirements for a priori information. In this paper, we propose a new constrained spatiotemporal ICA (CSTICA) method based on the framework of multi-objective optimization, where the inequality constraint of the traditional CICA method is transformed into the objective optimization function of the CSTICA, and both temporal and spatial a priori information are included simultaneously. The simulated, hybrid, and real fMRI data experiments are designed to evaluate the performance of the proposed CSTICA method in comparison with the classical ICA and CICA methods. Compared with the traditional CICA methods, the CSTICA has circumvented the problem of threshold parameter selection. Furthermore, the experimental results demonstrate that the source recovery ability of the CSTICA has been improved to a certain extent especially in the cases of a priori information with low accuracies. Meanwhile, the results also indicate that the CSTICA reduces dependency on the accuracy of a priori information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.