Abstract
The conjugate gradient methods are numerously used for solving nonlinear unconstrained optimization problems, especially of large scale. Their wide applications are due to their simplicity and low memory requirement. To analyze conjugate gradient methods, two types of line searches are used; exact and inexact. In this paper, we present a new method of nonlinear conjugate gradient methods under the exact line search. The theoretical analysis shows that the new method generates a descent direction in each iteration and globally convergent under the exact line search. Moreover, numerical experiments based on comparing the new method with other well known conjugate gradient methods show that the new is efficient for some unconstrained optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.