Abstract

A novel conformal technique for the finite-difference time-domain (FDTD) method is proposed to deal with curved and arbitrarily oriented lossy thin panels. This is formulated as an extension of the existing conformal relaxed Dey–Mittra (CRDM) method combined with subcell algorithms to handle wave propagation across the panel. Two alternatives are presented for this: the classical impedance network boundary condition (INBC) and a recent subgridding boundary condition (SGBC) developed by the authors. Several test cases are employed to demonstrate the capability of the proposed method to remove errors associated with the usual staircased FDTD method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call