Abstract

Doubly fed induction generators are suitable for systems having limited speed range as the overall control can be carried out by fractionally rated converters. However, brushes and slip-rings used in these generators reduce system reliability and demand greater maintenance. Dual stator winding induction generator (DSWIG), being brushless, removes this limitation. Two distributed windings are embedded in the stator and the rotor is squirrel-cage. One of the windings is interfaced to an uncontrolled rectifier and the other to a fractionally rated PWM converter. Uncontrolled rectifier degrades the power quality within the generation system. At the same time, reactive power demand in induction generators increases with loading. This paper deals with design and control of a standalone dc system based on DSWIG, where a combination of passive tuned filter and series capacitor is utilized to address the voltage regulation and power quality issue. Simulation results using MATLAB/Simulink and experimental results (obtained from a laboratory prototype) have been presented, compared, and discussed to demonstrate the effectiveness of the proposed alternative.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call