Abstract

All mammals, including humans, are designed to produce sustained locomotor movements. Many higher centres are involved in movement, but ultimately these centres act upon a core "rhythm-generating" network within the brainstem-spinal cord. In addition, endurance-based locomotor exercise requires sympathetic neural support to maintain homeostasis and to provide needed metabolic resources. This review focuses on the roles and integration of these 2 neural systems. Part I reviews the cardiovascular, thermoregulatory, and metabolic functions under spinal sympathetic control as revealed by spinal cord injury at different levels. Part II examines the integration between brainstem-spinal sympathetic pathways and the neural circuitry producing motor rhythms. In particular, the rostroventral medulla (RVM) contains the neural circuitry that (i) integrates heart rate, contractility, and blood flow in response to postural changes; (ii) initiates and maintains cardiovascular adaptations for exercise; (iii) provides direct descending innervation to preganglionic neurons innervating the adrenal glands, white adipose tissue, and tissues responsible for cooling the body; (iv) integrates descending sympathetic drive for energy substrate mobilization (lipolysis); and (v) is the relay for descending locomotor commands arising from higher brain centres. A unifying conceptual framework is presented, in which the RVM serves as the final descending supraspinal "exercise integration centre" linking the descending locomotor command signal with the metabolic and homeostatic support needed to produce prolonged rhythmic activities. The role and rationale for an ascending sympathetic and locomotor drive from the lower to upper limbs within this framework is presented. Examples of new research directions based on this unifying framework are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call