Abstract
Developing materials that possess colorimetric responses to external stimuli is a promising strategy for addressing the current challenges in radiation dosimetry. Currently, colorimetric ionizing-radiation-responsive materials remain underexplored, and those with multistimuli response are rare. Herein, the integration of thorium cation and photoresponsive terpyridine carboxylate ligand gives rise to a thorium nanocluster, Th-101, which displays the second case of fluorochromic response and unprecedented piezochromic behavior among all actinide materials. The emission color of Th-101 exhibits a gradual transition from blue to cyan to green upon irradiation with accumulated dose, which renders colorimetric dosimetry of ionizing radiation based on a red-green-blue (RGB) concept. Further fabricating Th-101 into a custom-built optoelectronic device allows for on-site quantification of radiation dose with merits of ease of operation, rapid readout, and cost-effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.