Abstract

Diode-laser absorption spectroscopy finds increasing applications in the emerging field of stable isotope research. To meet the requirements of the water isotopes measurement challenge in environmental research, ways have to be found to cope with the present limitations of spectroscopic systems. In this article, we discuss an approach based on the Stark effect in molecular spectra to reduce the influence of time-dependent, unwanted background structures generally superimposed on the desired signal from the spectral feature under investigation. A road map to high-sensitivity isotopic ratio measurements of water isotopes is presented. On the basis of an Allan Variance analysis of measured data, the detection limits have been calculated as a function of the integration time. To achieve the required optical density of about 6×10−7 for H2 17O measurements, the duty cycle has to be optimized and the implementation of a sample modulation within an optical multipass cell is a promising approach to increase the stability of spectroscopic instrumentation required for ecosystem research and airborne atmospheric platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.