Abstract

BackgroundEvery endosseous dental implant is dependent on an adequate amount and quality of peri-implant hard and soft tissues and their fully functional interaction. The dental implant could fail in cases of insufficient bone and soft tissues or due to a violation of the soft to hard tissues to implant shoulder interface with arising of a secondary bone loss.MethodTo overcome this biological weak-spot, we designed a new implant that allows for multi vector endosseous anchorage around the individual underlying bone, which has to be scanned by computed tomography (CT) or Cone beam CT (CBCT) technique to allow for planning the implant. We developed a workflow to digitally engineer this customized implant made up of two planning steps. First, the implant posts are designed by prosthodontic-driven backward planning, and a wireframe-style framework is designed on the individual bony surface of the recipient site. Next, the two pieces are digitally fused and manufactured as a single piece implant using the SLM technique (selective laser melting) and titanium-alloy-powder.ResultsPreoperative FEM-stress-test of the individual implant is possible before it is inserted sterile in an out-patient procedure.ConclusionUnlike any other historical or current dental implant protocol, our newly developed “individual patient solutions dental” follows the principle of a fully functional and rigid osteosynthesis technology and offers a quick solution for an implant-borne dental rehabilitation in difficult conditions of soft and hard tissues.

Highlights

  • Every endosseous dental implant is dependent on an adequate amount and quality of peri-implant hard and soft tissues and their fully functional interaction

  • With our new concept for implant-borne dental rehabilitation, we focus on the idea of a digital workflow for implant planning, engineering, Gellrich et al Head & Face Medicine (2017) 13:17 and manufacturing and have revisited the subperiosteal implants designed and installed in the 1940s [10]

  • Considering the advantages and disadvantages of the conventional cylindrical or conical dental implants and the subperiosteal implants, we have developed a new design for difficult cases, where the quantity and quality of the bone, as well as the surrounding soft tissues, do not match the requirements for conventional implant dentistry

Read more

Summary

Introduction

Every endosseous dental implant is dependent on an adequate amount and quality of peri-implant hard and soft tissues and their fully functional interaction. The dental implant could fail in cases of insufficient bone and soft tissues or due to a violation of the soft to hard tissues to implant shoulder interface with arising of a secondary bone loss. A successful dental implant is based on optimal hard and soft tissue requirements. It includes appropriate dimensions (vertical, sagittal, and transverse) and quality of the bone together with healthy soft tissues around the implant shoulder including an area of non-mobile keratinized gingiva. Appropriate dental implant planning and treatment has to envision long-term success. The combination of a perfectly fitting subperiosteal implant together with a rigid fixation technique has not been adequately considered

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call