Abstract

Plate heat exchangers (PHEs) have significant potential to improve energy efficiency in the process industries. However, realizing their full potential to achieve such energy savings requires a systematic approach to screen the many options available. Thus, this work presents a generalized novel approach for the optimal design of both gasket and welded plate heat exchangers, with different plate geometries and flow configurations. A new design method coupled with an optimization framework is proposed to obtain the optimal solution with minimum total transfer area by setting up a series of relations between temperatures among each single-pass block with known inlet and outlet temperatures of process streams. An MINLP mathematical model is developed to select the best combination of the flow pass configuration and available commercial plate geometries within practical design constraints. The differences between the design methodology of gasket and welded PHEs are highlighted. Two case studies are used to demonstrate the proposed method for both gasket and welded PHEs. Results show that better design with reduced heat transfer area by 10.71% and design time by 83.3% is obtained compared with previously proposed approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.