Abstract

In this paper, a new framework for one-dimensional contour extraction from discrete two-dimensional data sets is presented. Contour extraction is important in many scientific fields such as digital image processing, computer vision, pattern recognition, etc. This novel framework includes (but is not limited to) algorithms for dilated contour extraction, contour displacement, shape skeleton extraction, contour continuation, shape feature based contour refinement and contour simplification. Many of the new techniques depend strongly on the application of a Delaunay tessellation. In order to demonstrate the versatility of this novel toolbox approach, the contour extraction techniques presented here are applied to scientific problems in material science, biology, handwritten letter recognition, astronomy and heavy ion physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.