Abstract

Extraordinary actions such as blast loadings and high velocity impact are rare, but usually have devastating effects. Thus, making critical infrastructures, such as military and governmental facilities, power-plants, dams, bridges, hospitals, etc., more resilient against these hazards is one of the best ways to protect ourselves and our societies. Since concrete is a very common construction material, the development of realistic numerical tools to efficiently simulate its failure behavior under extreme dynamic loading conditions is of paramount importance, but still a major challenge. This thesis presents a new stress-based nonlocal effective rate-dependent damage model, developed to simulate the dynamic response and failure of concrete during ballistic impact. The proposed isotropic damage formulation combines the effect of three damage modes: (i ) tension (mode I), (i i ) compressive-shear (mode II and mixed-mode) and (i i i ) hydrostatic damage to describe crushing of the cement matrix under pressure. The strain-rate dependent update of the constitutive relations to express the dynamic increase of strength and fracture energy in tension and compression is made a function of an effective rate, instead of the commonly used instantaneous strain rate. An enhanced version of the stress-based nonlocal regularization scheme is used to correct spurious mesh sensitivity. The proposedmodel was developed solely in the effective strain-space, following an entirely explicit computation scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.