Abstract

This paper presents an integrated model based on a compromised solution method to solve fuzzy belief multi-objective large-scale nonlinear programming (FBMOLSNLP) problem with block angular structure. A new method is proposed to transfer each belief decision-making problem into some fuzzy problems. Furthermore, we propose a new compromise method of decision-making as one of the most efficient methods based on the particular measure of closeness to the ideal solution to aggregate multi-objective decision-making (MODM) problems into a single problem. The decomposition algorithm based on Dantzig–Wolfe is utilized to reduce the large-dimensional objective space into a two-dimensional space. Then, Zimmerman method is applied to transfer each bi-objective to a single-objective. Moreover, TOPSIS and VIKOR are utilized as two independent solution methods to aggregate each multi-objective sub-problem. Finally, a new single-objective nonlinear programming problem is solved to find the final solution. To justify the proposed model, two illustrative examples are provided, and the results of three decision methods are compromised.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.