Abstract
In this paper, we first present a full-Newton step feasible interior-point algorithm for solving horizontal linear complementarity problems. We prove that the full-Newton step to the central path is quadratically convergent. Then, we generalize an infeasible interior-point method for linear optimization to horizontal linear complementarity problems based on new search directions. This algorithm starts from strictly feasible iterates on the central path of a perturbed problem that is produced by a suitable perturbation in the horizontal linear complementarity problem. We use the so-called feasibility steps that find strictly feasible iterates for the next perturbed problem. By using centering steps for the new perturbed problem, we obtain a strictly feasible iterate close enough to the central path of the new perturbed problem. The complexity of the algorithm coincides with the best known iteration bound for infeasible interior-point methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.