Abstract

The new highly accurate complete basis set model, CBS-QB3, was employed here to elucidate the long experimentally discussed problem in a general class of chemiluminescent reactions involving peroxyoxalate systems. Both the stability comparison and the vibrational spectra favor that the intermediate is better to be recognized as the cyclic singlet 1,2-dioxetanedione with the C2v symmetry, which verifies the experimental suggestion yet provides more characterization information. Another two kinds of minimum species in its potential energy surface (PES) are two kinds of product: (1) two carbon dioxide and (2) two carbon monoxide and one oxygen, where the thermodynamic parameters correctly identify their relative yield in the experiment—the former is much more abundant than the latter. In a complete search of minimum states in its PES, the triplet C2v and D2h states were found, which is energetically unfavorable compared with the singlet C2v state. Their vibrational data also support some experimental conclusions of ruling out a radical intermediate. In contrast, the singlet D2h state was found to be a transition state for the “up” and “down” singlet C2v states. The complete active space self-consistent-field calculations with the second-order Möller–Plesset correlation energy correction also support that the most stable species is the singlet C2v state and the singlet D2h state is more energetically favorable than its triplet counterpart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.