Abstract

We present evidence for the regular behaviour of the Boyle temperature TB in gaseous binary mixtures of small molecules with negligible multipolar moments. We use this regularity to construct a new combining rule for the prediction of the cross interaction u12(r) in those mixtures. The combining rule gives TB of the cross interaction as the harmonic mean of the Boyle temperatures of the pure components. The validity of this harmonic rule is based on experimental data of 28 binary mixtures, whose TB have been obtained from experimental data of the cross virial coefficient B12(T). In determining TB we make use of non-conformal potentials that have been proven to represent very accurately the effective interactions of the molecules investigated. The new combining rule is used to give interaction parameters of several dozens of binary mixtures involving noble gases (Ne, Ar, Kr and Xe), diatomic molecules (N2, O2 and CO) and n-alkanes (from methane to n-octane). These interaction parameters lead to a prediction of cross virial coefficients B12(T) within experimental error. Electrostatic interactions, originating in permanent dipolar, quadrupolar, octupolar and hexadecapolar moments and exemplified by molecules of HCl, CO2, CF4 and SF6, depart from the regular non-polar behaviour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.