Abstract

In this paper, we propose a new collaborative process that aims to detect macrocalcifications from mammographic images while minimizing false negative detections. This process is made up of three main phases: suspicious area detection, candidate object identification, and collaborative classification. The main concept is to operate on the entire image divided into homogenous regions called superpixels which are used to identify both suspicious areas and candidate objects. The collaborative classification phase consists in making the initial results of different microcalcification detectors collaborate in order to produce a new common decision and reduce their initial disagreements. The detectors share the information about their detected objects and associated labels in order to refine their initial decisions based on those of the other collaborators. This refinement consists of iteratively updating the candidate object labels of each detector following local and contextual analyses based on prior knowledge about the links between super pixels and macrocalcifications. This process iteratively reduces the disagreement between different detectors and estimates local reliability terms for each super pixel. The final result is obtained by a conjunctive combination of the new detector decisions reached by the collaborative process. The proposed approach is evaluated on the publicly available INBreast dataset. Experimental results show the benefits gained in terms of improving microcalcification detection performances compared to existing detectors as well as ordinary fusion operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.