Abstract

Cold-active enzymes have become attractive biocatalysts in biotechnological applications for their ability to retain high catalytic activity below 30 °C, which allows energy reduction and cost saving. Here, a 1041 bp gene pel1 encoding a 34.7 KDa pectate lyase was cloned from a facultatively psychrophilic Antarctic bacterium Massilia eurypsychrophila and heterologously expressed in Escherichia coli. PEL1 presented the highest 66% identity to the reported mesophilic pectate lyase PLXc. The purified PEL1 exhibits the optimum temperature and pH of 30 °C and 10 toward polygalacturonic acid, respectively. PEL1 is a cold-active enzyme that can retain 60% and 25% relative activity at 10 °C and 0 °C, respectively, while it loses most of activity at 40 °C for 10 min. PEL1 has the highest specific activity (78.75 U mg-1) than all other reported cold-active pectinase, making it a better choice for use in industry. Based on the detailed sequence and structure comparison between PEL1 and PLXc and mutation analysis, more flexible structure and some loop regions may contribute to the cold activity and thermal instability of PEL1. Our investigations of the cold-active mechanism of PEL1 might guide the rational design of PEL1 and other related enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.