Abstract

We characterize a hitherto undocumented type of neuron present in the regions bordering the principal layers of the macaque lateral geniculate nucleus. Neurons of this type were distinguished by a high and unusually regular maintained discharge that was suppressed by spatiotemporal modulation of luminance or chromaticity within the receptive field. The response to any effective stimulus was a reduction in discharge, reminiscent of the "suppressed-by-contrast" cells of the cat retina. To a counterphase-modulated grating, the response was a phase-insensitive suppression modulated at twice the stimulus frequency, implying a receptive field comprised of multiple mechanisms that generate rectifying responses. This distinctive nonlinearity makes the neurons well suited to computing a measure of contrast energy; such a signal might be important in regulating sensitivity early in visual cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.