Abstract
Description of temporal networks and detection of dynamic communities have been hot topics of research for the last decade. However, no consensual answers to these challenges have been found due to the complexity of the task. Static communities are not well defined objects, and adding a temporal dimension makes the description even more difficult. In this article, we propose a coherent temporal clustering method to explore the dynamics of research communities: the Best Combination of Local Communities (BCLC). Our method aims at finding a good balance between two contradictory objectives: closely following the short-term evolution by finding optimal partitions at each time step, on the one hand, and temporal smoothing, which privileges historical continuity, on the other hand. We test our algorithm on two bibliographic data sets by comparing their mesoscale dynamic description to those derived from a (static) simple clustering algorithm applied over the whole data set. We show that our clustering algorithm can reveal more complex dynamics than the simple approach and reach a good agreement with expert’s knowledge.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.