Abstract
In this paper, as a generalization of the Black–Scholes (BS) model, we elaborate a new closed-form solution for a uni-dimensional European option pricing model called the J-model. This closed-form solution is based on a new stochastic process, called the J-process, which is an extension of the Wiener process satisfying the martingale property. The J-process is based on a new statistical law called the J-law, which is an extension of the normal law. The J-law relies on four parameters in its general form. It has interesting asymmetry and tail properties, allowing it to fit the reality of financial markets with good accuracy, which is not the case for the normal law. Despite the use of one state variable, we find results similar to those of Heston dealing with the bi-dimensional stochastic volatility problem for pricing European calls. Inverting the BS formula, we plot the smile curve related to this closed-form solution. The J-model can also serve to determine the implied volatility by inverting the J-formula and can be used to price other kinds of options such as American options.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.