Abstract

In this study, we propose a new algorithm which works in Lorentzian space with a similar sense in the k-NN method. We exploit the distance metric of Lorentzian space in classification problem. It is a special metric which may give a zero distance for far points. To take best benefit from structural and other properties of the Lorentzian space, a special projection over the data sets is applied. By this projection, basic geometrical operations are used; namely translation (shifting), compression and rotation. Our new algorithm does classification according to the nearest neighbor in Lorentzian space. The usability and validity of the proposed classification method is tested by some public data sets such as WHOLE, VERTEBRAL, RELAX, ECOLI. The results are compared with results of well-known classical classification methods such as kNN, LDA, SVM and Bayes. As a result, our proposed algorithm produces more successful results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.