Abstract
CpG islands, which have higher GC content and CpG frequencies compared to the genome as a whole, are generally believed to be unmethylated in tissues except at promoters of genes undergoing X chromosome inactivation or genomic imprinting. Recent studies, however, have shown that CpG islands at promoters of a number of genes contain tissue-dependent, differentially methylated regions (T-DMRs). In general, the tissue-specific methylation is restricted to a part of the promoter CpG island, with hypomethylation of the remaining sequence. In the current study, using comparison between Restriction Landmark Genomic Scanning (RLGS) and in silico RLGS, we identified ten sperm-specific unmethylated NotI sites, T-DMRs located in CpG islands that were hypomethylated in sperm but near-completely methylated in the kidney and brain. Unusually, these T-DMRs involve the whole CpG island at each of these loci. We characterized one of these genes, adenine nucleotide translocator 4 (Ant4), which is expressed in germ cells. Using a promoter assay, we demonstrated that expression of Ant4 gene is controlled by DNA methylation at the CpG island sequences within the promoter region. Ant4 and other sperm-specific hypomethylated loci represent a new class of CpG islands that become completely methylated in different cell lineages. T-DMRs at CpG islands are functionally important gene regulatory elements that may now be categorized into two classes: T-DMRs involving a subregion of the CpG island and those that occupy the whole CpG island.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.