Abstract

The article presents a class of reconfigurable modular parallel robots stemming from the 3-CPS under-actuated topology. Proposed here is a conceptual design where the spherical joint which connects each leg to the end-effector is realized as a combination of revolute pairs; a locking system allows one to alternatively fix one of the revolute joints, giving the machine different 3-CPU kinematic configurations which correspond to different types of mobility. The first part of the paper demonstrates that the robot is able to perform different types of motion, specifically of pure translation and pure rotation; in the last part a sample design of the reconfigurable robot is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.