Abstract
Quantile regression is one of the alternative regression techniques used when the assumptions of classical regression analysis are not met, and it estimates the values of the study variable in various quantiles of the distribution. This study proposes ratio-type estimators of a population mean using the information on quantile regression for stratified random sampling. The proposed ratio-type estimators are investigated with the help of the mean square error equations. Efficiency comparisons between the proposed estimators and classical estimators are presented in certain conditions. Under these obtained conditions, it is seen that the proposed estimators outperform the classical estimators. In addition, the theoretical results are supported by a real data application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.