Abstract
The aim of this work is to introduce a new family of potentials with inverse square singularity which we called the Pöschl–Teller family of potentials. We enforced the matrix representation of the wave operator to be symmetric and (2k[Formula: see text]+[Formula: see text]1) band-diagonal with respect to a square integrable basis set. This, in principle, is only satisfied for specific potential functions within the used basis set. The basis functions we used here are written in terms of Jacobi polynomials, which is the same basis used in the Tridiagonal Representation Approach (TRA). This yield a more general form of Pöschl–Teller potential that can have many terms which could be beneficial for modeling different physical systems where this potential applies. As an illustration, we have studied a specific new five-parameter potential that belongs to this new family and calculated the bound states for both s-wave and l-wave cases using the Asymptotic Iteration Method (AIM). Along the way, we have introduced new approximation schemes to deal with the l-wave centrifugal potential within the AIM at different approximation orders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.