Abstract
We herein present a new continuum theory for both isotropic and anisotropic elastoplasticity at large strains. The new framework has the following properties: (1) It is valid for non-moderate large strains, (2) it is valid for both elastic and plastic anisotropy, (3) its description in rate form is parallel to that of the infinitesimal formulation, (4) it is compatible with the multiplicative decomposition, (5) results in a similar framework in any stress-strain work-conjugate pair, (6) it is consistent with the principle of maximum plastic dissipation and (7) does not impose any restriction on the plastic spin, which must be given as an independent constitutive equation. Furthermore, when formulated using logarithmic strain measures in the intermediate configuration: (8) it may be easily integrated using a classical backward-Euler rule resulting in an additive update. All these properties are obtained simply considering a plastic evolution in terms of a corrector rate of the proper elastic strain. This new continuum theory is a natural framework for elastoplasticity of both metals and soft materials and solves the (so-coined by Simo) rate issue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.