Abstract

A new class of high-entropy perovskite oxides (i.e., multiple-cation solid solutions with high configurational entropies) has been synthesized. Six of the 13 compositions examined, including Sr(Zr0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3, Sr(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3, Ba(Zr0.2Sn0.2Ti0.2Hf0.2Ce0.2)O3, Ba(Zr0.2Sn0.2Ti0.2Hf0.2Y0.2)O3−x, Ba(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3 and (Sr0.5Ba0.5)(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3, can form homogeneous single solid-solution phases. Goldschmidt's tolerance factor, instead of cation-size difference, influences the formation and temperature-stability of single cubic perovskite solid solutions. This new class of multicomponent (high-entropy) perovskite solid solutions with distinct and highly-tunable chemistries can enable simultaneous tailoring of multiple properties and potentially lead to new functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call