Abstract

Group field theories, a generalization of matrix models for 2D gravity, represent a second quantization of both loop quantum gravity and simplicial quantum gravity. In this paper, we construct a new class of group field theory models, for any choice of spacetime dimension and signature, whose Feynman amplitudes are given by path integrals for clearly identified discrete gravity actions, in first order variables. In the three-dimensional case, the corresponding discrete action is that of first order Regge calculus for gravity (generalized to include higher order corrections), while in higher dimensions, they correspond to a discrete BF theory (again, generalized to higher order) with an imposed orientation restriction on hinge volumes, similar to that characterizing discrete gravity. This new class of group field theories may represent a concrete unifying framework for loop quantum gravity and simplicial quantum gravity approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call